Skip to main content

SVI Parameterization

Advanced Topic

This page covers the mathematical details of SVI - the industry-standard model for vol surface interpolation. If you're looking for intuition on how vol surfaces work, start with Vol Surface or How Surfaces Are Built.

SVI (Stochastic Volatility Inspired) is a parametric model for the volatility smile, widely used for interpolation and extrapolation.

The SVI Formula

The raw SVI parameterization expresses total implied variance as:

w(k)=a+b(ρ(km)+(km)2+σ2)w(k) = a + b \left( \rho(k - m) + \sqrt{(k - m)^2 + \sigma^2} \right)

Where:

  • w(k)=σ2(k)Tw(k) = \sigma^2(k) \cdot T is total implied variance
  • k=ln(K/F)k = \ln(K/F) is log-moneyness
  • a,b,ρ,m,σa, b, \rho, m, \sigma are the five parameters

Parameter Interpretation

ParameterRangeControls
aaa>0a > 0Variance level (vertical shift)
bbb0b \geq 0Slope magnitude
ρ\rho1<ρ<1-1 < \rho < 1Skew direction and magnitude
mmAny realHorizontal shift of minimum
σ\sigmaσ>0\sigma > 0Curvature (ATM smile convexity)

Skew (ρ\rho)

  • ρ<0\rho < 0: Put skew (left wing higher)
  • ρ>0\rho > 0: Call skew (right wing higher)
  • ρ=0\rho = 0: Symmetric smile

Curvature (σ\sigma)

  • Small σ\sigma: Sharp V-shape
  • Large σ\sigma: Smooth U-shape

For a valid (arbitrage-free) SVI surface, several constraints must hold. These extend the fundamental put-call parity relationship to the entire surface:

Butterfly constraint (no negative butterfly spreads):

b(1+ρ)4Tb(1 + |\rho|) \leq \frac{4}{T}

Calendar constraint (variance must increase with time): For slices at T1<T2T_1 < T_2:

w1(k)w2(k)kw_1(k) \leq w_2(k) \quad \forall k

Roger Lee's moment formula (bounds on wings):

lim supk±w(k)k2\limsup_{k \to \pm\infty} \frac{w(k)}{|k|} \leq 2

Converting to IV

From total variance w(k)w(k) to implied volatility:

σ(k,T)=w(k)T\sigma(k, T) = \sqrt{\frac{w(k)}{T}}

Jump-Wing (JW) Parameterization

An alternative parameterization more intuitive for traders:

vt,ψt,pt,ct,v~tv_t, \psi_t, p_t, c_t, \tilde{v}_t

Where:

  • vtv_t = ATM variance
  • ψt\psi_t = ATM skew
  • ptp_t = Put wing slope
  • ctc_t = Call wing slope
  • v~t\tilde{v}_t = Minimum variance

Fitting SVI

To Market Data

  1. Collect IV observations at multiple strikes
  2. Convert to total variance: wi=σi2Tw_i = \sigma_i^2 \cdot T
  3. Minimize weighted least squares:
mina,b,ρ,m,σiωi(wiw(ki;a,b,ρ,m,σ))2\min_{a,b,\rho,m,\sigma} \sum_i \omega_i \left( w_i - w(k_i; a,b,\rho,m,\sigma) \right)^2

Weights ωi\omega_i often based on vega or bid-ask spread.

Practical Tips

  • Initialize with SABR or simple estimates
  • Enforce constraints during optimization
  • Check for calendar arbitrage across expiries

SSVI extends SVI to model the entire surface consistently:

w(k,θt)=θt2(1+ρϕ(θt)k+(ϕ(θt)k+ρ)2+(1ρ2))w(k, \theta_t) = \frac{\theta_t}{2}\left( 1 + \rho\phi(\theta_t)k + \sqrt{(\phi(\theta_t)k + \rho)^2 + (1-\rho^2)} \right)

Where:

  • θt\theta_t = ATM total variance at time tt
  • ϕ(θ)\phi(\theta) = function controlling term structure of skew

This guarantees calendar spread arbitrage-free by construction.

Why SVI?

AdvantageExplanation
ParsimoniousOnly 5 parameters per slice
FlexibleCan fit most observed smile shapes
Extrapolates wellBehaves sensibly in wings
Arbitrage controlConstraints are well-understood

See Also